Забыла математику

и задачки для интервью.
Irena
Уже с Приветом
Posts: 740
Joined: 16 Sep 1999 09:01

Забыла математику

Post by Irena »

<BLOCKQUOTE><font size="1" face="Arial">quote:</font><HR>Originally posted by stockman:
[i:d121d244d6] Ага, я так и предполагал. Выкладок не видно, а решение откуда то взялось. Конечно же подбором.[/i:d121d244d6]<HR></BLOCKQUOTE>

Если вы о нахождении корня x=1, то в моём посте, в пункте 3 есть выкладки (если их можно так громко назвать [img:d121d244d6]http://www.privet.com/ubb/smile.gif[/img:d121d244d6]).
А почему вообще применяют тот или другой метод, формулу, закон и пр.? Если тоже подбором, то довольно странно: из чего выбирать-то, если все только выбирают? "Creative approach" мне нравится гораздо больше...
User avatar
SergeyVZ
Уже с Приветом
Posts: 2261
Joined: 07 Mar 2000 10:01
Location: Brasil>Japan>MD>CA

Забыла математику

Post by SergeyVZ »

<BLOCKQUOTE><font size="1" face="Arial">quote:</font><HR>Originally posted by Irena:
То SergeyV: После сложения двух уравнении получаем x^2+y^2+x+y-14=0 - уравнение еллипса ?, может это даёт мне что-нибудь в смысле корнеи?
[/I]<HR></BLOCKQUOTE>
К сожалению, вряд ли... Кстати, все равно необходимо рассматривать ОБА уравнения в системе - т.к. только их пересечение (в геометрическом смысле) дает искомые корни.
Вообще, геометрически это лучше рассматривать как две поверхности которые пересекаются друг с другом (давая 4 кривые) и с плоскостью Z = 0 (давая 4 точки).

Кстати, а разве схема Горнера не помогла ? "Мы-то думали что она нам поможет..." [img:b06dc8756f]http://www.privet.com/ubb/smile.gif[/img:b06dc8756f] Значит, вопрос об аналитических решениях остается открытым ?
COPOKA
Уже с Приветом
Posts: 881
Joined: 22 Dec 2000 10:01
Location: USA

Забыла математику

Post by COPOKA »

There's a cubic formula!

Just the formula: http://www.utm.edu/~jschomme/cardano.htm
Deriving the cubic: http://www.sosmath.com/algebra/factor/fac11/fac11.html

Maybe, I'll try to solve it tomorrow...
Irena
Уже с Приветом
Posts: 740
Joined: 16 Sep 1999 09:01

Забыла математику

Post by Irena »

<BLOCKQUOTE><font size="1" face="Arial">quote:</font><HR>Originally posted by COPOKA:
[i:fe3195dad4]There's a cubic formula!

Just the formula: http://www.utm.edu/~jschomme/cardano.htm
Deriving the cubic: http://www.sosmath.com/algebra/factor/fac11/fac11.html

Maybe, I'll try to solve it tomorrow...[/i:fe3195dad4]<HR></BLOCKQUOTE>

Класс! Теперь я уже дорешаю сама. Ну что мы, математики (и бывшие, и настоящие), за люди: пока не решим (хоть и не нужно практически) , пока все точки над "и" не расставим, всё что-то гложет... (А как насчет полинома n-и степени? [img:fe3195dad4]http://www.privet.com/ubb/smile.gif[/img:fe3195dad4] [img:fe3195dad4]http://www.privet.com/ubb/smile.gif[/img:fe3195dad4] )
СОРОКА, спасибо!
User avatar
SergeyVZ
Уже с Приветом
Posts: 2261
Joined: 07 Mar 2000 10:01
Location: Brasil>Japan>MD>CA

Забыла математику

Post by SergeyVZ »

[This message has been edited by SergeyVZ (edited 16-01-2001).]
User avatar
SergeyVZ
Уже с Приветом
Posts: 2261
Joined: 07 Mar 2000 10:01
Location: Brasil>Japan>MD>CA

Забыла математику

Post by SergeyVZ »

<BLOCKQUOTE><font size="1" face="Arial">quote:</font><HR>Originally posted by COPOKA:
[i:e1a92f4d59]There's a cubic formula!
[/i:e1a92f4d59]<HR></BLOCKQUOTE>
Конечно, формула Кардано (она, кстати, есть в любом справочнике по математике) дает решения кубического уравнения в аналитическом виде... мне казалось, что про эту формулу все знают, и раз продолжают обсуждение, значит, нужно какое-то другое решение [img:e1a92f4d59]http://www.privet.com/ubb/smile.gif[/img:e1a92f4d59]

<BLOCKQUOTE><font size="1" face="Arial">quote:</font><HR>Originally posted by Irena:
[i:e1a92f4d59] А как насчет полинома n-й степени? [img:e1a92f4d59]http://www.privet.com/ubb/smile.gif[/img:e1a92f4d59] [img:e1a92f4d59]http://www.privet.com/ubb/smile.gif[/img:e1a92f4d59] )
[/i:e1a92f4d59]<HR></BLOCKQUOTE>
Имеется теорема, по которой алгебр. уравнения 5-й степени и выше (т.е. корни полинима 5-й степени и выше) в ОБЩЕМ случае НЕРАЗРЕШИМЫ в элементарных функциях... [img:e1a92f4d59]http://www.privet.com/ubb/frown.gif[/img:e1a92f4d59] Поэтому ур-е 4-й степени - это максимум что можно решить АНАЛИТИЧЕСКИ [img:e1a92f4d59]http://www.privet.com/ubb/wink.gif[/img:e1a92f4d59]

Вот еще один вариант преобразования системы(это уже чисто спортивный интерес [img:e1a92f4d59]http://www.privet.com/ubb/biggrin.gif[/img:e1a92f4d59] ):

(x + 0.5)^2 + (y + 0.5)^2 = 14.5
(x - 0.5)^2 - (y - 0.5)^2 = -6

Как легко заметить, это графики окружности (со смещением центра в точку х = -0.5, y = -0.5) и двух гипербол (тоже со смещением центра, но уже в точку х = 0.5, y = 0.5) - см. иллюстрацию на первой странице...
Можно еще сделать замену переменных r = x + 0.5, s = y + 0.5 , тогда получим систему:

r^2 + s^2 = 14.5
(r-1)^2 - (s-1)^2 = -6

откуда можно получить пару независимых уравнений для корней r (каждое уравнение дает два корня x = r - 0.5 ):

r^2 - r + SQRT( 14.5 - r^2 ) = 4.25
r^2 - r - SQRT( 14.5 - r^2 ) = 4.25

или (после замены r = x - 0.5, s = y - 0.5) два уравнения для корней s (каждое уравнение дает два корня y = s + 0.5 ):

s^2 + s + SQRT( s^2 - 6 ) = 9.25
s^2 + s - SQRT( s^2 - 6 ) = 9.25

[This message has been edited by SergeyVZ (edited 16-01-2001).]

Return to “Головоломки”