aml5691 wrote: 04 Jan 2021 10:53
zVlad wrote: 03 Jan 2021 19:51
Я просмотрел бегло весь топик и нигде не увидел исходной постановки задачи, ее физической сущности. Речь идет только о каких-то сигналах с шумами, но под это подходит слишком широкой спектр задач с разными физическими моделями стоящими за ними. Может это секрет?
Когда то давным давно я занимался математическим аппаратом наблюдения и управленеия в условиях неопределенности (шум это оно и есть в первом приближении, но не только шум). Этот аппарат/метод был более интелектуальным чем действия с усреднениями, фильтрациями и корреляциями т.е стохастическими характеристиками.
Не занаю подходит ли тот метод здесь. Не достаточно информации о физической сущности измеряемого. Но если подходит то полагаю точность могла бы быть повешена существенно.
Поддерживаю замечание zVlad об отсутствии постановки задачи в данной теме. Ни свойства сигнала, ни свойства шума не определены, и не дано точное определение того, что же все таки ищется ("центр колокольчика"). Возможно также нужно об'яснить способ измерения сигнала. Подозреваю, что исходный сигнал - непрерывен, но он измеряется устройством, которое интегрирует исходный непрерывный сигнал по равноотстоящим интервалам измерения, выдавая в результате "дискретный" сигнал, по которому и вычисляется спектр.
Чтобы помочь все-таки сформулировать задачу, спрошу - пусть даны 2 "черных ящика", каждый из которых принимает на вход входные данные задачи (например исходный сигнал с шумами) и выдает одно единственное число - частоту, соответствующую "ценру колокольчика" (что бы это не означало). Для некоего данного сигнала, как можно установить, какой из этих двух черных ящиков более точно определил эту частоту "центра колокольчика"?
Добавлю еще, что в текущей постановке задача сводится к следующему. Имеется вещественнозначная функция одного вещественного аргумента, определенная только в наборе дискретных (равноотстоящих?) точек на некоем отрезке. У этой функции есть локальный максимум - "колокольчик". Требуется найти "центр колокольчика" (который может быть и между дискретными точками, в которых определена функция). Конкретное определение того, что является "центром колокольчика" постановщиками задачи считается несущественной и второстепенной информацией, потому что все такие колокольчики для них выглядят примерно одинаково - примерно как sinc(x). От математиков требуется найти "центр колокольчика" как можно точнее!
В такой постановке, конечно же никакой математик никакого решения дать не сможет, по крайней мере и прежде всего потому, что в условии задачи отсутствует точное определение того, что нужно найти - "центра колокольчика". Как результат отсутствия такого определения, предлагаемые решения невозможно верифицировать. Подозреваю также, что для решения задачи нужно знать больше о функции, которая образует "колокольчик". То, что эта функция является спектром некоего сигнала само по себе не дает никакой дополнительной информации об этой функции, если о свойствах сигнала ничего не известно или не дано.
Конструктивно, могу посоветовать две вещи:
1. Нужно говорить с математиками, которые решали подобные задачи. У них должны быть представления, о том, какими могут быть дополнительные условия и параметры задачи, они могут обсудить их варианты и решить задачу или по крайней мере корректно ее сформулировать.
2. Другой подход - как выше предлагает zVlad, может иметь смысл рассказать о физическом смысле задачи. Что представляет из себя исходный сигнал, зачем нужно знать "центр колокольчика" и как он будет использоваться? Если есть понимание этих вопросов, и понимание свойств сигнала (и возможно шумов), то грамотный математик возможно по крайней мере сможет сформулировать задачу, а может быть и решить ее.
Как пример об'яснения физического смысла: в упомянавшейся в обсуждении выше масс-спектрометрии и задаче определения положения пиков в масс-спектрограммах, исходный (идеальный) масс-спектр образца состоит из дискретных бесконечно тонких пиков. Положение этих пиков по оси Х соответствует определенным значениям удельного (по массе) заряда ионов образовавшихся из образца (или обратной величины, массы деленной на заряд). Высоты пиков (значение по оси Y) - концентрации ионов с таким удельным зарядом. Чтобы не путаться, отмечу, что масс-спектрограмма не является преобразованием Фурье какого-либо сигнала. В результате неидеальности процесса измерения (конечный размер электрода в детекторе, неоднородное распределение ионов по скоростям на входе в масс-анализатор и т.п.), в измеренной масс-спектрограмме каждый из пиков размазывается, и вместо дискретных пиков получается (квази)непрерывная измеренная масс-спектрограмма. По этой (квази)непрерывной масс-спектрограмме нужно восстановить положение и высоту исходных дискретных пиков исходный (идеальный) масс-спектр. Зная свойства и параметры неидеальности процесса измерения (размер электрода, распределение ионов по скоростям), можно предлагать различные методы нахождения таких дискретных пиков в исходном, идеальном масс-спектре. См.
https://en.wikipedia.org/wiki/Mass_spectrometry