Для будущих интервью (чтобы блеснуть знаниями ) я бы посоветовал обратить внимание на работы Колмогорова и Арнольда 1950-х годов. Я (как и ряд других исследователей) считаю, что они дают математическое обоснование, хотя это и не так очевидно. В конце 80-х - начале 90-х появилось много публикаций на эту тему. Сейчас есть ряд публикаций на тему многослойных нейронных сетей.Chessplayer wrote: ↑29 Mar 2020 18:49 За теоретическим обоснованием это вы к Владимиру Вапинику обращайтесь. Он за это deep learning как раз критикует. Но эмпирически методы хорошо работают для большого ряда задач компьютерного зрения, распознавания текстов и аудио.
Насчет работают - вопрос очень открытый. Согласен, что для распознования образов конволюционные сети работают хорошо, а для текстов работает LSTM. Однако, бум на глубокое обучение, на мой взгляд, не совсем оправдан. Так как методика основана на большом количестве гипер-параметров, обучение может привратиться в кошмар. Возможно, клауд поможет все распаралелить. Более того, в отличие от той же регрессии и суппорт вектор машины, формулированная задача минимизации целевой функции может (а на практике и будет) иметь множество локальных экстремумов. В результате процесс обучения начинает превращаться в жонглирование параметрами типа ранней остановки или изменения коэффициентов градиентного метода, чтобы вылезти из локальной ямы.