Очередной вопрос к специалистам. Теперь уже на тему Deep Learning.
В общем, работаю над домашним проектом. Есть определенный потенциал к монетизации даже.
Построил пайплайн для сбора данных с Интернета. Количество входных элементов в нейронную сеть для тренировки будет составлять 1 млн штук (можно попробовать упростить до 500 тысяч в случае чего). Каждый объект будет содержать около 50 тысяч фишек (features). Допустим, у меня будет один скрытый слой в нейронке размером 50 тысяч нейронов (можно попробать упростить до 1000 ради сохранения скорости и размера используемой памяти). Выходной слой - 1000 (тысяча) классификаций с ответами "да" и "нет".
То есть получится матрица параметров для скрытого слоя размерности около 50 тысяч на 1 миллион вещественных чисел. Вектором скаляров B преенебрегаем для данного примера. Для выходного слоя матрица будет 1 тысяча на 50 тысяч.
Конечная цель - натренировать модель и создать программку для айфона для прикольных и полезных

предсказаний для пользователей. То есть, челдобречик на телефоне загружает фотку, а модель ему предсказывает что-то в зависимости от контента фотки.
В общем два пути реализации:
1. Натренированная модель хранится на моем сервере. Клиентская прога загружает фотку на сервер и сервер выдает предсказание клиентовской программе. Минус в том, что нужно платить за хостинг и домен. Не хочется.
2. Натренированная модель хранится в самой айфоновской программе и программа сама уже анализирует фотку. Минус в том, что я не знаю как реализовать это все в Objective C. Глянул на документацию эплвского SDK для мобильных устройст с поддержкой ML и с нейронными сетями. Как всегда у них все запутано и нужно долго разбираться с бутылкой, даже чтобы просто понять, можно ли теориетически эту SDK использовать для просчитанной большой нейронной сети.
Кто-нибудь сталкивался со вторым пунктом? Такое возможно реализовать через эпловский SDK?