Задача о двух дорогах

и задачки для интервью.
Brat Levon
Уже с Приветом
Posts: 275
Joined: 26 Jul 2001 09:01
Location: Stamford, CT

Задача о двух дорогах

Post by Brat Levon »

Из пункта А в пункт Б ведет две дороги. Известно, что два человека, связанные нерастяжимой веревкой в один метр, могут пройти из одного пункта в другой, каждый по своей дороге.
Пусть из А в Б и из Б в А одновременно по разным дорогам вышли два человеке. Докажите, что в какой-то момент расстояние между ними будет равно 1 метру.
User avatar
sttranik
Уже с Приветом
Posts: 753
Joined: 18 Sep 2000 09:01
Location: Fremont, CA

Задача о двух дорогах

Post by sttranik »

пусть две дороги будут дорога номер 1 и дорога номер 2. из условия очевидно что для каждой точки дороги 1 есть одна или две точки дороги 2, расстояние до которой(-ых) равно 1 м. пусть человек А идет по дороге 1. вместе с ним двигается окружность радиусом 1 м, центр которой совпадает всегда с А. пересечения (или касание) окружности с дорогой 2 - это точки до которых расстояние 1 м. имеем функции - координата А и координаты двух пересечений, плюс координата Б в зависимости от времени. можно ввести одномерную функцию используя в качестве координаты угол вектора, проведенного из начала координат в каждую точку:
пусть
f1(t) - функция движения А
fi2_1(t) - функция движения первой точки пересечения
fi2_2(t) - функция движения второй точки пересечения.
f2(t) - функция движения Б

для одного или обоих уравнений
1) f2(t) = fi2_1(t)
2) f2(t) = fi2_2(t)
должно существовать решение, т.к. можно показать, выбрав соответствующим образом систему координат, что в начальный момент
f2(t) - fi2_1(t) > 0
и/или
f2(t) - fi2_2(t) > 0
и каждая разность уменьшается с увеличением времени, следовательно каждая или одна из разностей имеет ноль, и решение есть.


.
User avatar
Kisena
Уже с Приветом
Posts: 1615
Joined: 12 Jul 2001 09:01
Location: Raleigh, NC

Задача о двух дорогах

Post by Kisena »

Не пойдет, наверное. Как функцию угла можно представить отнюдь не любую кривую.

Из того, что функция убывает, не следует, вообще говоря, что она убывает к нулю.
User avatar
Melkor
Уже с Приветом
Posts: 1257
Joined: 03 Oct 2001 09:01
Location: Valinor->Utumno->Angband

Задача о двух дорогах

Post by Melkor »

Можно построить двумерную функцию. x - позиция на дороге 1 (от 0 до 1, скажем), y - на дороге 2. f(x,y) - расстояние между соотв. точками на дорогах. Первые путники доказывают, что существует непрерывная линия из (0,0) в (1,1), для которой f(x,y)<=1. Очевидно, что любая линия из (1,0) в (0,1) пересечет эту линию.
User avatar
Kisena
Уже с Приветом
Posts: 1615
Joined: 12 Jul 2001 09:01
Location: Raleigh, NC

Задача о двух дорогах

Post by Kisena »

Лажа. Сорри.

[ 29-10-2001: Message edited by: Kisena ]
PavelM
Уже с Приветом
Posts: 13316
Joined: 13 Jun 1999 09:01
Location: Yekaterinburg -> Montreal

Задача о двух дорогах

Post by PavelM »

<BLOCKQUOTE><font size="1" face="Arial, Verdana, Helvetica, sans-serif">quote:</font><HR>Originally posted by Brat Levon:
<STRONG>Из пункта А в пункт Б ведет две дороги. Известно, что два человека, связанные нерастяжимой веревкой в один метр, могут пройти из одного пункта в другой, каждый по своей дороге.
Пусть из А в Б и из Б в А одновременно по разным дорогам вышли два человеке. Докажите, что в какой-то момент расстояние между ними будет равно 1 метру.</STRONG><HR></BLOCKQUOTE>


Условие требует некоторого уточнения потому что в некоторых случаях ета задача не имеет решения. Например когда длина дороги менее 1 метра [img:34f222c106]images/smiles/icon_wink.gif[/img:34f222c106] Ну или например если обе дороги любым способом укладываются внутри окружности диаметром менее 1 метра.

Дороги также могут идти скажем на расстоянии 10см друг от друга но быть U-образными, длиной скажем 100км и задача также не будет иметь решения.

[ 29-10-2001: Message edited by: PavelM ]
-ЭР-
Уже с Приветом
Posts: 784
Joined: 26 Oct 2001 09:01

Задача о двух дорогах

Post by -ЭР- »

<BLOCKQUOTE><font size="1" face="Arial, Verdana, Helvetica, sans-serif">quote:</font><HR>Originally posted by Brat Levon:
<STRONG>Из пункта А в пункт Б ведет две дороги. </STRONG><HR></BLOCKQUOTE>
Опять же для разнообразия J

Пусть F(t) – расстояние между игроками. В начальный и конечныймоменты времени F = S. Где S – расстояние между А и Б. Важное ограничение – расстояние между А и Б должно быть больше 1 метра.

Тогда рассмотрим глобальный минимум F. Если он больше 1 м, то нарушается условие, что могут пройти два человека связанные веревкой длиной 1 м. Если же глобальный минимум меньше 1м, то вследствии непрерывномти F существует такое время t, при котором F = 1 м.
User avatar
Kisena
Уже с Приветом
Posts: 1615
Joined: 12 Jul 2001 09:01
Location: Raleigh, NC

Задача о двух дорогах

Post by Kisena »

<BLOCKQUOTE><font size="1" face="Arial, Verdana, Helvetica, sans-serif">quote:</font><HR>Originally posted by PavelM:
<STRONG>


Условие требует некоторого уточнения потому что в некоторых случаях ета задача не имеет решения. Например когда длина дороги менее 1 метра [img:6bb2e18990]images/smiles/icon_wink.gif[/img:6bb2e18990] Ну или например если обе дороги любым способом укладываются внутри окружности диаметром менее 1 метра.

Дороги также могут идти скажем на расстоянии 10см друг от друга но быть U-образными, длиной скажем 100км и задача также не будет иметь решения.

[ 29-10-2001: Message edited by: PavelM ]</STRONG><HR></BLOCKQUOTE>

Решение Melcor'a не зависит от формы дороги.
TSmile
Новичок
Posts: 24
Joined: 24 Apr 2001 09:01
Location: Moscow -> USA

Задача о двух дорогах

Post by TSmile »

Пусть r1(t) и r2(t) соответственно радиус-вектора 1 и 2 пешеходов когда они идут из А в В. Т.к. пешеходы связаны нераст. нитью в 1 м, то расстояние между ними |r1(t)-r2(t)| <=1 в любой момент времени, т.е |r1(T/2)-r2(T/2)|<=1, где T - время в пути того пешехода, который во втором заходе пойдет из т. В (например, пешехода 2).
Пусть теперь r12(t) и r22(t) соответственно радиус-вектора 1 и 2 пешеходов когда они идут навстречу друг другу. r12(t)=r1(t), r22(t)=r2(T-t). Рассмотрим t=T/2, |r12(T/2)-r22(T/2)|=|r1(T/2)-r2(T-T/2)|=|r1(T/2)-r2(T/2)|<=1. Отсюда, в силу непрерывности ф-ции расст., если есть такой момент времени, что пешеходы находятся на расст более 1м друг от друга, то найдется и такой, что они будут находится на расст 1М. (требование, чтобы в какой-то момент вр. путники были удалены болле чем на 1 м неообх.)
User avatar
sttranik
Уже с Приветом
Posts: 753
Joined: 18 Sep 2000 09:01
Location: Fremont, CA

Задача о двух дорогах

Post by sttranik »

<BLOCKQUOTE><font size="1" face="Arial, Verdana, Helvetica, sans-serif">quote:</font><HR>Originally posted by Kisena:
<STRONG>Не пойдет, наверное. Как функцию угла можно представить отнюдь не любую кривую.
</STRONG><HR></BLOCKQUOTE>
в данном случае это не важно - нам не обязательно "представлять" эту кривую. мы просто рассматриваем значение угла и зависимость этого значения от времени (что и определяет движение). поскольку кривая у нас заданна фиксированно в пространстве каждое значение угла однозначно определяет положение путника (или другой точки интереса).
<BLOCKQUOTE><font size="1" face="Arial, Verdana, Helvetica, sans-serif">quote[quote:4673bc4f50]<STRONG>Из того, что функция убывает, не следует, вообще говоря, что она убывает к нулю.</STRONG>[/quote:4673bc4f50]
скажем так - функция непрерывна и из условия задачи очевидно что мои разности имеют ноль. тут в соседнем топике говорили про теорему Коши о нулях непрерывной функции - в данном случае ситуация схожая и можно использовать аналогичное размышление чтобы показать что функция имеет нули.
Valeus
Уже с Приветом
Posts: 27517
Joined: 08 Oct 2001 09:01

Задача о двух дорогах

Post by Valeus »

Функции - хренункции. А нельзя так - тот, кто вышел из А в Б по дороге #1, ведет за собой, все на той же веревке, собачку по дороге #2 (также из А в Б). В то же время по дороге #2 из Б в А вышел другой. Когда тот другой повстречается с собачкой - БИНГО!
-ЭР-
Уже с Приветом
Posts: 784
Joined: 26 Oct 2001 09:01

Задача о двух дорогах

Post by -ЭР- »

<BLOCKQUOTE><font size="1" face="Arial, Verdana, Helvetica, sans-serif">quote:</font><HR>Originally posted by Valeus:
<STRONG>Функции - хренункции. А нельзя так - тот, кто вышел из А в Б по дороге #1, ведет за собой, все на той же веревке, собачку по дороге #2 (также из А в Б). В то же время по дороге #2 из Б в А вышел другой. Когда тот другой повстречается с собачкой - БИНГО!</STRONG><HR></BLOCKQUOTE>


Мне очень понравилось. Но расстояние в момент встречи может быть меньше метра, а надо ровно 1м, насколько я понимаю.
Valeus
Уже с Приветом
Posts: 27517
Joined: 08 Oct 2001 09:01

Задача о двух дорогах

Post by Valeus »

<BLOCKQUOTE><font size="1" face="Arial, Verdana, Helvetica, sans-serif">quote:</font><HR>Originally posted by -ЭР-:
<STRONG>


Мне очень понравилось. Но расстояние в момент встречи может быть меньше метра, а надо ровно 1м, насколько я понимаю.</STRONG><HR></BLOCKQUOTE>

Ето смотря какая собака - иная ведь поводок тянет.
User avatar
Melkor
Уже с Приветом
Posts: 1257
Joined: 03 Oct 2001 09:01
Location: Valinor->Utumno->Angband

Задача о двух дорогах

Post by Melkor »

<BLOCKQUOTE><font size="1" face="Arial, Verdana, Helvetica, sans-serif">quote:</font><HR>Originally posted by Valeus:
<STRONG>Функции - хренункции. А нельзя так - тот, кто вышел из А в Б по дороге #1, ведет за собой, все на той же веревке, собачку по дороге #2 (также из А в Б). В то же время по дороге #2 из Б в А вышел другой. Когда тот другой повстречается с собачкой - БИНГО!</STRONG><HR></BLOCKQUOTE>

Тут требуются дополнительные уточнения, поскольку в первом случае пешеходы идут строго так, чтобы сохранять расстояние 1м, а во втором они могут идти как угодно (резко менять скорость, идти назад, и. т.п.). Т.о., не очевидно, что человек с собачкой может идти произвольным образом, компенсируя все особенности своего маршрута собачкой. Т.е., это очевидно [img:fc4c88c471]images/smiles/icon_smile.gif[/img:fc4c88c471], но не с математической точки зрения. Так что, без "хрефункции", связывающей параметрические координаты пешеходов не обойтись, боюсь.

[ 30-10-2001: Message edited by: Melkor ]
Drom
Уже с Приветом
Posts: 242
Joined: 03 Jan 2000 10:01
Location: TX > MA/NH > NJ/NYC

Задача о двух дорогах

Post by Drom »

<BLOCKQUOTE><font size="1" face="Arial, Verdana, Helvetica, sans-serif">quote:</font><HR>Originally posted by Melkor:
<STRONG>
Тут требуются дополнительные уточнения, ...</STRONG><HR></BLOCKQUOTE>

?

то что написал Valeus в своем решении и ваше:
<BLOCKQUOTE><font size="1" face="Arial, Verdana, Helvetica, sans-serif">quote:</font><HR> <STRONG>
Можно построить двумерную функцию. x - позиция на дороге 1 (от 0 до 1, скажем), y - на дороге 2. f(x,y) - расстояние между соотв. точками на дорогах. Первые путники доказывают, что существует непрерывная линия из (0,0) в (1,1), для которой f(x,y)<=1. Очевидно, что любая линия из (1,0) в (0,1) пересечет эту линию.
</STRONG><HR></BLOCKQUOTE>

это одно и то же. (у вас, правда, собачку может вести и второй [img:d48e9f06cf]images/smiles/icon_wink.gif[/img:d48e9f06cf] вместо первого).
И там, и там надо потом делать оговорки про непрерывность и расстояние между пунктами >1m если хочется получить ровно метр из условия.
User avatar
Melkor
Уже с Приветом
Posts: 1257
Joined: 03 Oct 2001 09:01
Location: Valinor->Utumno->Angband

Задача о двух дорогах

Post by Melkor »

<BLOCKQUOTE><font size="1" face="Arial, Verdana, Helvetica, sans-serif">quote:</font><HR>Originally posted by Drom:
<STRONG>

это одно и то же. (у вас, правда, собачку может вести и второй [img:9d2112a529]images/smiles/icon_wink.gif[/img:9d2112a529] вместо первого).
</STRONG>
Одно и то же будет как раз если сделать небольшое уточнение, что время, которое присутствует явно в варианте с собачкой, можно исключить из рассмотрения, представив параметрическую координату собачки как функцию параметрической координаты путника (другими словами - показать, что путник может двигаться не так, как в первый раз, сохраняя при этом собачку на поводке). Я что хочу сказать: чисто жизненными соображениями без толики математики, все же, не обойтись.

<STRONG>И там, и там надо потом делать оговорки про непрерывность и расстояние между пунктами >1m если хочется получить ровно метр из условия.</STRONG>
Ну, это само собой...

<HR></BLOCKQUOTE>
-ЭР-
Уже с Приветом
Posts: 784
Joined: 26 Oct 2001 09:01

Задача о двух дорогах

Post by -ЭР- »

<BLOCKQUOTE><font size="1" face="Arial, Verdana, Helvetica, sans-serif">quote:</font><HR>Originally posted by Valeus:
<STRONG>

Ето смотря какая собака - иная ведь поводок тянет.</STRONG><HR></BLOCKQUOTE>

... или просто ленивая - тащить надо. Атлична все тада.
User avatar
sttranik
Уже с Приветом
Posts: 753
Joined: 18 Sep 2000 09:01
Location: Fremont, CA

Задача о двух дорогах

Post by sttranik »

одной собачкой имхо не обойтись. скорость второго путника может быть много меньше скорости первого и первый может придти в пункт Б до момента, когда второй путник коснется собачки.
если же ввести двух собачек - одна убегает, все время держа поводок в натяжении, вторая сопротивляется движению вперед, тоже держа поводок в натяжении. тогда в момент пересечения на дороге 2 второго путника с одной из собачек мы имеет 1 м расстояния между путниками.
Online
Уже с Приветом
Posts: 136
Joined: 23 Mar 2001 10:01
Location: USA

Задача о двух дорогах

Post by Online »

Одной собачкой обойтись, конечно, трудно.
Но можно попробовать: будем раскручивать ее над головой с безумной скоростью, держа на поводке и второго путника поджидать (или вперед прокрадываться - он ведь от судьбы-то не уйдет так и так). Ну и вот мы с такой окружностью из раскручиваемой собачки(метр так метр) движемся навстречу друг другу по кривулям, о которых так прямо и сказано, что кто по ним идет - собачкой по башке. Но намеками: дескать, есть две кривули, да такие, что кусок второй кривой, ограниченный точками пересечения с окружностью, всегда находится внутри этой окружности). И вот где окружность вторую кривую пересекает - собачкой по башке. И так два раза - при встрече и расставании, если очухается.
Таково собачье дело.
ПС Я категорически против жестокого обращения с животными и ничего не подозревающими путниками.
BrLex
Новичок
Posts: 42
Joined: 16 Nov 2001 10:01
Location: RF-->?

Задача о двух дорогах

Post by BrLex »

а по моему она всё же вертится!

круг (типа)
диаметр(типа)
типа эээ всегда
гы гы [img:cd546e6712]images/smiles/icon_rolleyes.gif[/img:cd546e6712] [img:cd546e6712]images/smiles/icon_rolleyes.gif[/img:cd546e6712] [img:cd546e6712]images/smiles/icon_rolleyes.gif[/img:cd546e6712]
maa
Posts: 5
Joined: 29 Sep 2001 09:01
Location: Chicago

Задача о двух дорогах

Post by maa »

<blockquote><font size="1" face="Arial, Verdana, Helvetica, sans-serif">quote:</font><hr>Originally posted by Kisena:
<strong>

Решение Melcor'a не зависит от формы дороги.</strong><hr></blockquote>

Ну если есть петельки - то зависит
wanderer
Новичок
Posts: 88
Joined: 05 Sep 1999 09:01
Location: CA, USA

Задача о двух дорогах

Post by wanderer »

<blockquote><font size="1" face="Arial, Verdana, Helvetica, sans-serif">quote:</font><hr>Originally posted by Brat Levon:
<strong>Из пункта А в пункт Б ведет две дороги. Известно, что два человека, связанные нерастяжимой веревкой в один метр, могут пройти из одного пункта в другой, каждый по своей дороге.
Пусть из А в Б и из Б в А одновременно по разным дорогам вышли два человеке. Докажите, что в какой-то момент расстояние между ними будет равно 1 метру.</strong><hr></blockquote>

Обозначим длину первого пути от А до Б за U.
Обозначим длину второго пути от А до Б за V.

Пусть в обоих случаях путник #1 идет по первому пути, а путник #2 - по второму.

В обоих случаях обозначим за X текущую дистанцию от путника #1 до А, а за Y - расстояние от путника #2 также до А и в тот же момент времени.

В первом случае множество точек (X,Y) в декартовой системе составит непрерывную кривую соединяющую точки (0,0) и (U,V).

Во втором случае аналогично построенная кривая соединит точки (0,V) и (U,0).

Четыре вышеуказанные точки определяют прямоугольник. Вышеуказанные кривые лежат целиком внутри этого прямоугольника и соединяют его противоположные вершины. Следовательно, эти кривые пересекаются по крайней мере в одной точке.

Интерпретация: в какой то момент времени люди идущие навстречу будут находится в тех же точках своего пути, что и люди идущие вместе находились в какой то другой момент времени, а следовательно, на расстоянии не больше 1 метра.

Следствие для случая #2: поскольку расстояние между людьми меняется непрерывно, и изначально было больше 1 метра (это мы обязанны предположить), то в какой то момент оно будет в точности 1 метр.
User avatar
adb
Уже с Приветом
Posts: 9275
Joined: 14 Dec 2001 10:01
Location: Российская Федерация

Задача о двух дорогах

Post by adb »

Хмм. А чем не подойдет следующее решение. Возьмем пустим из пункта А сразу двух человек по двум дорогам с веревкой 1 метр. Из пункта В по какай-нибюудь одной дороге. Когда Чувак из пункта В столкнется носом с кем-нибудь из пункта А то расстояние между ним и другим чуваком будет заведомо <= 1 метр. Может не совсем строго, но по-моему верное доказательство.
lonewolf
Уже с Приветом
Posts: 1125
Joined: 13 Apr 2001 09:01
Location: NJ, USA

Задача о двух дорогах

Post by lonewolf »

Фигню спорол

[ 27-12-2001: Message edited by: Lone Wolf ]</p>

Return to “Головоломки”